
© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(9):9715-9724 | https://dx.doi.org/10.21037/apm-21-2013

Original Article

Comparing different algorithms for the course of Alzheimer’s 
disease using machine learning

Xiaomu Tang, Jie Liu

Department of Radiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 

Wuhan, China

Contributions: (I) Conception and design: X Tang; (II) Administrative support: X Tang; (III) Provision of study materials or patients: X Tang; (IV) 

Collection and assembly of data: J Liu; (V) Data analysis and interpretation: J Liu; (VI) Manuscript writing: Both authors; (VII) Final approval of 

manuscript: Both authors.

Correspondence to: Jie Liu. Department of Radiology, Wuhan Fourth Hospital, No. 473 Hanzheng Street, Qiaokou District, Wuhan 430000, China. 

Email: tuotuo_7957@163.com.

Background: Alzheimer’s disease (AD) is one of the most influential nervous system diseases in the world. 
It is accompanied by symptoms such as loss of memory, thinking, and language ability. This paper discusses 
the characteristic indexes of brain magnetic resonance imaging (MRI) in mild cognitive impairment (MCI) 
and AD. It applies the MRI characteristic indexes in machine learning to classify and predict the course of 
AD to select the best model for classification and prediction auxiliary diagnosis of AD.
Methods: In this study, 560 eligible subjects numbered 0–15,000 in the AD Neuroimaging Initiative (ADNI) 
database were randomly selected. According to the ADNI diagnostic criteria, the subjects were divided into 
four groups: the cognitive normal (CN) group (n=140), 230 cases in the early MCI (EMCI) group, 110 cases 
in the late MCI (LMCI) group, and 80 patients in the AD group. Random forest (RF), decision tree (DT), 
support vector machine (SVM) algorithms were used to classify and predict the different disease progress 
of AD. Next, different MRI indexes were input into the three machine learning algorithms to predict CN-
EMCI-LMCI-AD. We compared the prediction accuracy, sensitivity, specificity, and area under the receiver 
operating characteristic (ROC) curve (AUC).
Results: This study found that CN-AD had the highest classification accuracy, followed by EMCI-AD, 
CN-LMCI, LMCI-AD, EMCI-LMCI, and CN-EMCI. In the prediction of CN-AD, the AUC of 0.92 of 
the RF classifier was higher than the AUCs of the SVM and DT classifiers. Of the three machine learning 
algorithms, RF was better than the SVM and DT at predicting different MRI features. The accuracy of RF, 
SVM, and DT was 73.8%, 60.7%, and 59.5%, respectively.
Conclusions: The RF classifier had the best prediction effect on different disease processes of AD. 
Five MRI indexes (used as classification features) had the best prediction effects. CN-AD had the best 
classification effect. Overall, the classification accuracy of the RF classifier for CN-EMCI-LMCI-AD was 
higher than those of the other models. The RF classifier can be used to classify different stages of AD in the 
early stages of the disease to assist in diagnosing AD.
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Introduction

Alzheimer’s disease (AD) is a degenerative disease involving 
the central system and complex genes (1). The clinical 
feature of AD is progressive cognitive decline, which leads 
to the complete need for nursing care within a few years of 
clinical diagnosis (2). AD is the leading cause of dementia 
in people aged over 60 years. In 2015, there were 46.8 
million dementia patients, and it was estimated that this 
figure would double every 20 years (3). By 2050, there 
will be 131.5 million dementia patients, of which 2/3 will 
be AD patients (3). AD places significant economic and 
psychological pressures on society and families.

At present, the etiology of AD is not clear. The risk 
factors of AD are aging, and apoE ε4 gene subtypes, 
gender, hypercholesterolemia, head trauma, education 
level, and depression (4). The diagnosis of AD is mainly 
based on multiple variables and factors, including genetic 
information, neuropsychological tests, cerebrospinal fluid 
biomarkers, and brain imaging data (5). Mild cognitive 
impairment (MCI) occurs in the intermediate state between 
normal elderly and dementia. MCI is a risk factor of AD, 
and it can develop into AD (2). MCI is the second stage 
of AD progression (6). If a patient displays symptoms and 
pathological changes of cognitive impairment, they are 
diagnosed with AD. The incidence rate of MCI is 9.9% of 
the world’s population, and the incidence rate of MCI is 
14% to 18% among individuals aged over 70 years (7).

The etiology and pathogenesis of AD remain unclear. 
At present, the clinical diagnosis mainly depends on 
the magnetic resonance imaging (MRI) analysis of 
patients and a neurological scale score that is used to 
judge their conditions. This method is highly subjective, 
time-consuming, and laborious, and carries a risk of 
misdiagnosis (8). The progression of AD is irreversible, 
but the treatment of MCI in the early stage of AD can 
delay the passage of the disease. Thus, the question of 
how to accurately distinguish among normal cognitive 
(NC), MCI, and AD to implement interventions and 
adjuvant treatments is essential in clinical settings (9). 
Feature extraction is of great significance in the clinical 
diagnosis of AD. Detecting the leading indicators of AD 
could reduce diagnostic procedures, costs, and time, which 
would lead to a better classification and prediction effect 
and provide a reference for clinical diagnosing (10).

Most MRI classification indexes are directly selected 
based on experience, and they have limited prediction 
ability and low prediction accuracy. In this study, we did not 

determine the above lesion sites immediately; rather, we 
reduced the dimensions of many MRI data. We input the 
reduced features into random forest (RF), support vector 
machine (SVM), and decision tree (DT) classifiers and 
conducted a cross-validation to evaluate the models to select 
the optimal model to assist in diagnosing the disease. This 
is an exploration of different machine learning for classify 
different course of AD. We present the following article in 
accordance with the STARD reporting checklist (available 
at https://dx.doi.org/10.21037/apm-21-2013).

Methods

Study design and participants

Based on the AD Neuroimaging Initiative (ADNI) (11), 
subjects aged between 60 and 90 who had received an 
education (or participated in work) for at least 6 years and 
met the diagnostic criteria for each group were selected. 
The subjects were required to have no contraindications 
for an MRI examination, were not allowed to participate 
in other tests, and signed informed consent forms. The 
inclusion criteria for each group were as follows: (I) 
cognitive normal (CN) group: match the NC elderly 
group in terms of age, gender, and education level; show 
no memory loss (excluding physiological amnesia); have 
an Mini-Mental State Examination (MMSE) score of 24– 
30 points; clinical dementia rating (CDR) is 0; have NC 
function without MCI or dementia; and face no barriers to 
basic daily activities; (II) early MCI (EMCI) group: be aged 
from 60 to 90 years; have a junior high school graduation 
level or above; have a MMSE of 24–30 points; in relation to 
the logical memory scale, have an education level as follows: 
≥16 years (9–11 points), 8–15 years (5–9 points), 0–7 years 
(3–6 points); have a CDR of 0.5; have no other cognitive 
impairment; and have no dementia; (III) late MCI (LMCI) 
group: compared to the EMCI group, the differences were 
as follows: an education level ≥16 years (≤8 points), 8– 
15 years (≤4 points), 0–7 years (≤2 points); (IV) AD group: 
have a MMSE score of 20–26; have a CDR score of 0.5 
or 1.0; and be diagnosed with AD according to the new 
standard of NINCDS/ADRDA (12). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

MRI data preprocessing

First, spatial standardization was used because there are 

https://dx.doi.org/10.21037/apm-21-2013


9717Annals of Palliative Medicine, Vol 10, No 9 September 2021

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(9):9715-9724 | https://dx.doi.org/10.21037/apm-21-2013

Figure 1 Sample of an MRI for examinig the brain among AD patients. MRI, magnetic resonance imaging; AD, Alzheimer’s disease.

differences in each individual brain and batch processing 
cannot be used nor can a standard template be used to 
extract features from each brain scan. To perform the spatial 
standardization, we used FreeSurfer software (http://surfer.
nmr.mgh.harvard.edu) (12). The spatial standardization 
was performed to eliminate the influence of individual 
differences. The brain region of all subjects matched the 
standard brain template (see Figure 1), and the average MRI 
map collected reflected the template.

We also smoothed the image to reduce noise. As the 
original image is not very clear, smoothing can improve the 
clarity of the image. The uniformity of the field intensity 
affects the gray level, which has a great effect on brain tissue 
segmentation. It is necessary to correct non-uniform fields. 
Each image was divided into several sub-images, and half of 
the adjacent regions overlapped each other. The maximum 
value of the gray value image was taken as the reference 
value of the sub-image white matter, and the non-brain 
tissue signal and noise signal were removed.

We also segmented images with different brain templates, 
and additional brain tissue features. The gray image was 
used for pre-segmentation, and the geometric information 
was then used for fine segmentation. Each part of the image 

was modulated by different levels of brightness, and the 
modulated image reflected changes in tissue volume. Using 
the above process, we identified 272 MRI attributes. There 
were 69 cortical volume (CV), 49 subcutaneous volume 
(SV), 68 thickness of cortical area (TA), 70 surface area (SA), 
and 16 hippocampal subfield (HS) items.

Original MRI features

At the beginning of this study, 272 original MRI features 
were obtained, comprising 69 CV, 49 SV, 68 TA, 70 SA, 
and 16 HS items. The unit of CV, SV, and HS is mm3, the 
division of TA is mm, and the division of SA is mm2.

Machine learning theory

The RF classifier is a combined classifier algorithm 
composed of many DT classification models (13). The 
RF classifier extracts multiple samples from the original 
illustrations using the bootstrap resampling method. First, 
each piece is modeled by a DT, and then these DT models 
are gathered together, and the final result is selected by 
voting. The purpose of the algorithm is to construct a set of 

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


9718 Tang and Liu. Machine learning for AD

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(9):9715-9724 | https://dx.doi.org/10.21037/apm-21-2013

tree classifiers and use the collection for classification and 
prediction by voting. The RF classifier is composed of many 
DTs. The classification ability of any individual tree may be 
minimal. However, after many DTs, each tree’s classification 
results can vote on a test sample to select the best 
classification model. As the RF machine learning algorithm 
achieves good performance and perfectly makes up for the 
low performance of a single classifier, the classifier can be 
used in various classifications and predictions.

The SVM is a learning method based on the structural 
risk minimization criterion, which takes the training 
error as the constraint condition, and the minimum 
confidence range as the optimization objective (14). The 
main advantage of this method is that it overcomes the 
problems of overlearning and falling into a local minimum 
in traditional ways and has a good generalization ability. 
A SVM can make a decision function for the linear 
classification sample set to classify the training set samples 
correctly, and ensures the classification hyperplane has 
good generalization ability. The obtained classification 
hyperplane must have the maximum classification interval. 
For linear data, the SVM introduces a non-linear mapping 
in the low dimensional space to the high dimensional space, 
which is linearly separable in the high dimensional space. 
The classification learner is then used to solve the problem.

A DT is a classic classification method. It uses a tree 
structure to make decisions to classify data by rules (14). 
It is mainly completed by two steps. First, the sample set 
is trained to generate a DT, and then the DT is pruned. 
Using a test sample set to verify the rules, any branch that 
affects the prediction results is cut off. Second, according 
to the distribution characteristics, the data are divided into 
different regions to ensure that all the samples contained 
in the node belong to the same category. The higher the 
purity, the better.

Statistical analysis

The code and data for the machine learning algorithms 
designed in this research were all carried out in RStudio 
software version 1.1.419 (RStudio Inc.). Clear environment 
variables were defined before each operation and the 
importation of data. A row represented a sample, and a 
column represented a feature attribute. The workspace 
window was mainly used for training and prediction. 
The main work was carried out in this window, including 
programming in the editor, debugging the debugging 
window, and implementing the program running. The 

results were displayed in the results window. Due to the 
wide range of values and different units of the original 
data, the direct input of the data reduced the model’s 
performance and resulted in the characteristic indexes 
with large values being assigned a more significant weight. 
Thus, to ensure the uniformity of data distribution in the 
measurement space, it was necessary to normalize the data.

The data set was divided into 10 similar mutually 
exclusive subsets, and each subset was consistent in terms of 
data distribution. Each time, the union of 9 subsets was used 
as the training set to build the prediction model, and the 
remaining subset was used as the test set to test the model’s 
performance. Thus, 10 training/test sets were obtained, and 
the average of the 10 results was finally obtained. Training 
set samples were used to train the data and generate models 
from the data. Next, the test set samples were input into the 
model for testing to verify the performance of the selected 
model. The classification accuracy, specificity, sensitivity, 
and area under the receiver operating characteristic (ROC) 
curve (AUC) of the 10-fold cross-validation method was 
used to evaluate the models. In general, the higher the 
accuracy, the higher the sensitivity and specificity, and the 
larger the AUC value, the better the model performance.

Results

Participants

Five hundred and sixty eligible subjects numbered 0–15,000 
in the ADNI database were randomly selected. Based on the 
diagnostic criteria of the ADNI, the subjects were divided 
into four groups: the CN group (n=140), 230 patients in 
the EMCI group, 110 patients in the LMCI group, and 80 
patients in the AD group.

The data used in this study were all obtained from the 
ADNI database. The demographic data included data 
on gender, age, and education level. MMSE ± standard 
deviation were used to describe each patient’s age, education 
level, and MMSE score. A ratio was used to describe the 
sex ratio. The means were evaluated by variance. The non-
numerical data were tested by chi-square tests. Indicators 
including age, education level, and MMSE scores meet the 
normality and homogeneity of variance. A variance test 
was carried out, and a chi-square test was carried out for 
gender. The results (see Table 1) showed that there were 
no differences in gender and education level among the 
four groups (P>0.05), but there was a difference in age and 
MMSE scores (P<0.05).
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Table 1 Baseline demographic of selected samples

Variables CN EMCI LMCI AD P

N 140 230 110 80 –

Gender (male/female) 73/67 126/104 74/36 40/40 0.51

Age 75.24±6.02 72.04±6.53 75.53±7.08 73.87±6.81 <0.01

Education 16.47±2.25 16.97±2.51 17.11±2.42 14.16±0.85 0.38

MMSE 28.43±1.14 28.25±1.52 23.51±1.75 21.09±2.05 <0.01

CN, cognitive normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease; MMSE, Mini-
Mental State Examination.

Table 2 Comparison of the five MRI features

MRI CN EMCI LMCI AD

CV (mm3) 10,132.56±1,162.56 9,725.52±1,286.24 9,225.84±1,354.48 8,215.02±1,562.26

SA (mm2) 32,542.54±2,562.56 29,257.45±2,248.54 27,416.85±2,154.24 25,846.57±1,884.46

HS (mm3) 952.05±114.25 901.25±119.56 854.18±129.57 784.43±121.85

SV (mm3) 1,438.54±179.55 1,379.46±220.57 1,278.94±214.25 1,098.45±154.25

TA (mm) 3.67±0.35 3.67±0.35 3.67±0.35 3.67±0.35

MRI, magnetic resonance imaging; CN, cognitive normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD, 
Alzheimer’s disease; CV, cortical volume; SA, surface area; HS, hippocampal subfield; SV, subcutaneous volume; TA, thickness of cortical 
area.

Test results

Table 2 sets out the results of the analysis of the collected 
MRI data. The CVs, SVs, TAs, SAs, and the volume of the 
HSs gradually decreased over the course of the disease, 
indicating that patients’ brains slowly atrophied.

Table 3 shows the comprehensive comparison results 
of the SVM, RF, and DT classifiers. Combined with 
specificity, sensitivity, and AUC, the prediction accuracy 
of the SVM, RF, and DT classifiers was analyzed. As  
Table 3 shows, in relation the three classifiers, the accuracy 
of the RF was better than that of the SVM in all AD 
courses, and the accuracy of the SVM was better than that 
of the DT. The prediction accuracy of the RF from high 
to low was CN-AD, EMCI-AD, CN-LMCI, LMCI-AD, 
EMCI-LMCI, and CN-EMCI. The ranking of the SVM 
and DT in the six courses was also consistent with that 
of the RF. In the prediction of CN-AD, the RF’s AUC of 
0.92 was higher than that the AUCs of the SVM and DT. 
The AUCs of the RF for CN-EMCI, CN-LMCI, CN-
AD, EMCI-LMCI, EMCI-AD and LMCI-AD were 0.59, 
0.81, 0.92, 0.75, 0.85, and 0.89, respectively. The AUCs 
of the SVM for the six courses were 0.58, 0.68, 0.91, 0.62, 

0.71, and 0.54, respectively. The AUCs of the DT for 
the six courses were 0.57, 0.62, 0.85, 0.58, 0.61, and 0.45, 
respectively. Thus, among the three prediction schemes, the 
RF was the best, SVM was the second best, and DT was the 
worst.

Figure 2  shows three kinds of machine learning 
algorithms compared with the original data and the five 
MRI indexes. The MRI parameters included the 272 raw 
data, the five features included in the algorithm calculation. 
(i.e., SV, CV, SA, TA, and HS). The prediction results 
included CN-EMCI, CN-LMCI, CN-AD, EMCI-LMCI, 
EMCI-AD, and LMCI-AD.

As the five parts of Figure 2 show, the RF had the best 
prediction effect across all the disease courses. According to 
the prediction results of CN-EMCI in Figure 2A, in relation 
to the three machine learning algorithms, the prediction 
effect of the RF for different MRI features was better than 
that of the SVM and the DT. The accuracy of the RF, 
SVM, and DT was 73.8%, 60.7%, and 59.5%, respectively. 
According to the prediction results of CN-LMCI (see 
Figure 2B), the highest accuracy of the RF for the 5 
included results for the 272 original data was 75.2%, the 
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Table 3 Comparison of the prediction results of SVM, RF, and DT

Algorithms CN-EMCI CN-LMCI CN-AD EMCI-LMCI EMCI-AD LMCI-AD

SVM

Accuracy (%) 65.51 74.12 90.18 70.84 86.51 72.71

Sensitivity (%) 78.25 61.45 81.54 29.04 68.54 58.15

Specificity (%) 27.58 83.15 92.41 70.18 93.75 80.45

AUC 0.58 0.68 0.91 0.62 0.71 0.54

RF

Accuracy (%) 77.45 87.56 96.14 81.25 90.15 84.54

Sensitivity (%) 79.51 64.71 88.14 38.74 93.51 67.91

Specificity (%) 33.54 83.94 92.81 85.94 92.43 72.46

AUC 0.59 0.81 0.92 0.75 0.85 0.89

DT

Accuracy (%) 61.84 71.52 87.27 65.24 81.84 69.43

Sensitivity (%) 75.85 58.58 78.97 27.89 67.58 56.54

Specificity (%) 25.85 81.45 89.57 68.74 90.41 78.14

AUC 0.57 0.62 0.85 0.58 0.61 0.45

SVM, support vector machine; RF, random forest; DT, decision tree; CN, cognitive normal; EMCI, early mild cognitive impairment; LMCI, 
late mild cognitive impairment; AD, Alzheimer’s disease; AUC, area under the receiver operating characteristic curve.

Figure 2 Prediction results of different MRI features by the SVM, RF and DT. (A) Prediction of CN-EMCI; (B) prediction of CN-LMCI; 
(C) prediction of CNAD; (D) prediction of EMCI-LMCI; (E) prediction of EMCI-AD; (F) prediction of LMCI-AD. MRI, magnetic 
resonance imaging; SVM, support vector machine; RF, random forest; DT, decision tree; CN, cognitive normal; EMCI, early mild cognitive 
impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease.
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highest accuracy of the SVM for the five included indexes 
was 72.4%, and the highest accuracy of the DT for the five 
indexes was 69%. As Figure 2C shows, the prediction results 
of CN-AD showed that the highest accuracy of the RF for 
the 272 original data was 90.5%, the highest accuracy of the 
SVM for HS was 87.2%, and the highest accuracy of the 
DT for HS was 87.8%. As Figure 2D shows, the prediction 
results of EMCI-LMCI showed that the highest accuracy of 
the RF for CV was 73.5%, the highest accuracy of the SVM 
for SA was 72.2%, and the highest accuracy of DT for SV 
was 63.8%. As Figure 2E shows, the prediction results of 
EMCI-AD showed that the highest accuracy of the RF for 
SV was 86.5%, the highest accuracy of the SVM for TA was 
73.2%, and the highest accuracy of DT for the five included 
indicators was 80.8%. As Figure 2F shows, the prediction 
accuracy of LMCI-AD was 69.7% for RF, 68.2% for SVM, 
and 66.8% for DT.

Discussion

As an important “data pre-processing” process, feature 
selection can solve dimension disasters in authentic 
tasks caused by too many attributes. In this study, we 
identified 272 MRI features. If we had only selected the 
attributes according to the location of the AD, such as the 
hippocampus, parahippocampal gyrus, and medial temporal 
lobe, we would not have been able to find some potential 
lesions of AD. If only 272 attributes had been analyzed, 
a dimension disaster would have occurred. By selecting 
the essential features from them, we ensured that no vital 
components were lost and the “redundant features” were 
removed, and thus reduced the difficulty of the machine 
learning tasks. There were 272 original MRI features, 
including 69 CV, 49 SV, 68 TA, 70 SA, and 16 HS items. 
After data dimensionality reduction by statistical methods, a 
total of five characteristic indexes were identified.

Patients with early stage of AD may have memory 
impairment, depression, sleep and wakefulness disorders, 
and sexual dysfunction. The hippocampus is mainly 
responsible for learning and memory, and its atrophy 
reflects the severity of AD (15). As MCI progresses to 
AD, the volume of the hippocampus decreases more 
seriously. Some studies have shown that the test repetition 
reproducibility of CA2-3, ca4-dg, inferior torus, and 
other hippocampal subregions is very similar to that of 
the hippocampus, which indicates that the hippocampal 
sub-region can also be used to reflect or predict disease 
progression (16). The hippocampal sub-region may be 

more suitable for predicting AD. The amygdala, which is 
attached to the end of the hippocampus, is an important 
brain structure for emotion, learning, and memory. In the 
medium brain, the entorhinal cortex connects the neocortex 
with the hippocampal formation. The primary excitatory 
source for hippocampal formation is the perforating 
bundle from the neurons in the second and third layers 
of the entorhinal cortex. Conversely, the neurons in the 
fourth layer receive most of the hippocampal efferent 
projections (17). When AD occurs, the neurons in the 
second and fourth layers of the entorhinal cortex are 
involved, resulting in the interruption of the afferent/
efferent pathway of the hippocampal formation (18). The 
hippocampus, hippocampal subregion, entorhinal cortex, 
and temporal lobe are used as independent indicators to 
study AD progression. In the temporal lobe, there are 
sensory language centers located in the posterior part of 
the superior temporal gyrus, auditory centers located in the 
middle part of the superior temporal gyrus and transverse 
temporal gyrus, olfactory centers located in the anterior 
part of the hippocampal gyrus of sulcus gyrus, and advanced 
centers related to memory and association (19).

Conversely, the hippocampus is located on the medial 
side of the temporal lobe. Thus, temporal lobe atrophy 
can be used to predict the progress of AD. The inferior 
horn of the lateral ventricle has a particular anatomical 
structure, extending forwards and downwards into the 
temporal lobe (20). When AD occurs, brain parenchyma 
atrophy, ventricular enlargement, and ventricular volume 
enlargement can be used as characteristic indexes to 
predict AD. Thus, with the passage of the disease from 
MCI to the AD, the index decreases, and the degree of 
brain atrophy becomes more and more serious. Some 
studies have applied the phenomenon of asymmetry in the 
cerebral hemisphere of AD to drug research (21). In future 
disease treatments and drug research, the choice of drug 
delivery mode and drug concentration should be different 
between the left and right hemispheres of the brain to get 
the best clinical effects (22).

MCI is divided into EMCI and LMCI. If a correct 
judgment of the disease is made in the early stage of AD, 
the burden that the disease places on society, families, 
and individuals will be significantly reduced. In this 
study, CN-EMCI-LMCI-AD were classified in pairs 
to increase the specificity and detail of the classification 
and to enable the early diagnoses of the disease. The 
three classification models used in this study (i.e., RF, 
SVM and DT) had the highest accuracy in CN-AD, 
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followed by EMCI-AD, CN-LMCI, LMCI-AD, and 
EMCI-LMCI. The accuracy of CN-EMCI prediction 
was low. However, in general, the accuracy of the six 
groups was relatively high, especially for EMCI-AD. 
After introducing gender and age, the accuracy rate of 
CN-AD was 91.07%. Based on the principal component 
analysis (PCA)-Fisher linear discriminant analysis (FLDA) 
ensemble classifier, CN-EMCI-LMCI-AD were classified 
in pairs, and the classification results of CN-AD and 
CN-EMCI were 95.65% and 60.53%, respectively (23).  
CN-AD had the highest prediction accuracy, which may 
be due to the brain differences between the NC group and 
AD group. EMCI and LMCI represent the middle stage of 
disease progression. Specifically, EMCI is the early stage 
of MCI, and LMCI is in the late stage of MCI. Thus, the 
prediction accuracy of CN-EMCI and CN-LMCI was 
lower than that of CN-AD. The accuracy of CN-EMCI 
classification was the lowest among all the indexes. The 
accuracy of CN-EMCI classification was very low; the 
highest CN-EMCI classification was 60.53%, and the 
overall accuracy of CN-EMCI classification in this study 
was 77.78% (24). Thus, the prediction accuracy of CN-
EMCI should be improved to enable diagnosis at the 
earliest stage of the disease, implement the corresponding 
prevention and control measures, and prevent the 
occurrence and progress of the disease. If the sample size 
were increased, it could be used in a four-classification study 
of CN-EMCI-LMCI-AD.

Machine learning research uses computer training data 
to produce a “model”. Machine learning has been gradually 
maturing and has been applied to the classification and 
prediction of AD. The RF classifier is an algorithm model. 
The advantage of the RF is that it had a good performance 
in the data set. Due to the randomness of the RF was 
not easy to overfit, and it also had the advantage of anti-
noise ability. Further, it can process both discrete data 
and continuous data and has unique advantages in the 
processing of high-dimensional data, including its simple 
and easy implementation, and low computational overhead. 
The RF uses the bootstrap resampling method to extract 
samples from the original samples, it then models each 
sample, and then votes on all DTs to select the final result. 
As RF is a classifier based on DTs, a DT classifier was also 
used as a classification prediction model in this study and 
compared to the RF.

At present, the SVM is a popular prediction model to 
predict AD. The highest accuracy rate of the SVM for the 
classification and prediction of AD is 91.6% (25), and the 

lowest is only 59.1%. Some research (26,27) has used the 
SVM for the classification and prediction of CN-AD, CN-
MCI, and MCI-AD, for which the accuracy rates were 
89%, 79%, and 85%, respectively. This study examined 3 
classification prediction models, and the optimal model was 
selected following comparisons. The results showed that 
all MRI features, including the 272 raw data and the five 
indexes, SV of SA, CV, TA, and HS had the best classification 
and prediction effects in the RF classifier, followed by the 
SVM. Conversely, the DT had the worst comprehensive 
prediction effect. The classification accuracy and AUC of 
the latter were higher than the former, and similar results 
were found for EMCI-AD, CN-LMCI, LMCI-AD, EMCI-
LMCI, CN-EMCI classifications. The best prediction 
model was the RF classification prediction model, which 
was based on five MRI indexes. Thus, RF can be used to 
predict MCI/AD. If the sample size was increased, we could 
also predict the risk of MCI transforming into AD.

In conclusion, compared to different machine learning 
classifiers, the RF classifier was the best algorithm to predict 
the progression of AD. Compared to additional MRI 
features, five MRI features were the best for classification. 
Specifically, in terms of classification accuracy, CN-AD was 
the best, followed by EMCI-AD, CN-LMCI, LMCI-AD, 
EMCI-LMCI, and CN-EMCI. Overall, the classification 
accuracy of the RF for CN-EMCI-LMCI-AD was higher 
than that of the other models. The RF classifier can 
effectively improve the efficiency of MCI/AD automatic 
diagnosis, and can classify the different stages of AD in the 
early stage to assist in diagnosing AD.
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